SECTION 4.5 - INVERSE OF A SQUARE MATRIX
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The Identity Matrix.
Example 1. Find the products
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Definition 1 (Identity Matrix). The n x n identity matrix is a matriz, denoted
by I or I, which is an n X n matriz with 1’s on the primcipal diagonal and 0’s
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everywhere else. For an m x n matrix M, we have

From the above example, we have the two forms of the identity matrix

IhowM =M = MI,.
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Inverse of a Square Matrix. It is only possible to find a multiplicative
inverse of a matrix if it is a square matrix. So, we now restrict ourselves to square
matrices.

Definition 2 (Inverse Matrix). If M is a square matrix of size n, and if there is
a matriz, denoted M1, such that

MM t=M1M=1,

we call M1 the inverse of M. If M does not have an inverse, then M is called
a singular matrix.

Example 2. Find the inverse of the matrix
2 3
(23]
Solution. Since we’re looking for a matriz which satisfies M X = I,,, we can use

the trick from the previous section and just row reduce [M|A] to the form [I,|X],
then check that X M = I,, as well.
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Example 3. Find the inverse of the matrix

So we should have that M~ = [ ] . We need to check that M~ 1M = I.
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Since there is only zeros in the bottom line of the left side, the matrix N does not
have an inverse.



Example 4. Find the inverse of the matriz
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Theorem 1. To find the inverse of an n X n matrix M, one begins with the
augmented matriz [M| I,) and uses row operations to transform it into [ I,| M~1].
However, if one or more rows of all 0’s appear on the left side of the augmented
matriz, M is not invertible, i.e., M~ does not exist.

Example 5. Find the inverse of the following matrices (if possible):

(a)

2 —6
-1
(b)
12 3
P=|111
2 3 2
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Remark 1. There is a trick to invert a 2 X 2 matriz. If M = [ o d

)

:ad—bc —C a

] , then

Cryptography. Suppose we represent letters by numbers as follows

Blank 0| I 9| R 18
A 1/J 10/S 19
B 2|/K 11|T 20
C 3|/L 12/ U0 21
D 4|M 13|V 22
E 5N 14|W 23
F 6/0 15| X 24
G T7/P 16|Y 25
H 8|Q 17|72 26

Then, for example, the message “SECRET CODE” would correspond to the
sequence

19531852003 1545

The goal of Cryptography is to encode messages in a different sequence which
can only be translated back to the message using a decoder.

Definition 3 (Encoding matrix/Decoding matrix). Any matriz with positive inte-
ger elements whose inverse exists can be used as an encoding matrix. The inverse
of an encoding matriz s a decoding matrix.

To encode a message, we must first decide on a encoding matrix A. If A is
a n X n matrix, then we create another matrix n X p matrix B by entering the
message going down columns and taking as many columns as necessary to fit the
whole message. Note that the number of rows of B MUST MATCH the size of A.
If there are extra entries in B after fitting the whole message, just fill them with
0’s.

Example 6. Encode the message “SECRET CODE” using the encoding matriz
2 3
A= [1 1] .
Solution. We first make the matriz B

B 19 3 5 0 15 5
|5 1820 3 4 0



Then to encode the message we find the product

(2 3 19 3 5 0 15 5
AB = 11][51820340]

(38415 6454 10460 0+9 30+12 10+0
1945 3418 5420 043 1544 540

~ [53 60 70 9 42 10
— |24 21 25 3 19 5

So the coded message is

53 24 60 21 70 25 9 3 42 19 10 5

Example 7. A message was encoded with A from the previous example. Decode

the sequence
29 12 69 28 70 25 111 43

Solution. First we have to invert the encoding matriz to get the decoding matrix

L1 1 -3
1—_
SREiET

Make a matriz out of the coded message in the same way as above

o [29 69 70 111
~ 12 28 25 43

and find the product

1~
A7C = | 1 9|12 98 25 43

[ —29+36 —69+84 —704 75 —111+129]

1 3 ] [29 69 70 111]

a 29—-24 69-56 7050 111 — 86

(715 5 18
5 13 20 25

Example 8. Use the encoding matriz

B —
2 31

(a) Encode the message “MATH IS FUN” using E.

111
21 21.

(b) Decode the sequence
39 60 91 65 110 125 6 7 16 44 63 113 37 53 87
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